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linear Schrodinger equation:

(t,x) €0, T[ xRN,

('LS)
where

m [0, T[ xRN = C;

wi’=—1
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linear Schrodinger equation:

0y = — A (t,x) € [0, T[ x RN, (LS)
where
m [0, T[ xRN = C;
mil=-1

m 0:1) is the derivative with respect to the time variable;
B A=Y .02 is the Laplacian on RN
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Non-linear Schrédinger equation:

9 b — — Aaly — -2 N
{ i) =~ — [U1920, (%) € [0, T[x RN, LS
where
m [0, T[ xRN = C;
mit=—1

m O:1) is the derivative with respect to the time variable;
B A=Y .02 is the Laplacian on RN

m g > 2 is a real parameter.
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Non-linear Schrédinger equation:

i0p) = =AY — |92, (t,x) € [0, T[ x RV, s
(0, %) = vo(x), w: RV 5 C, (L5
where
m [0, T[ xRV = C;
m %=1

m 0.1 is the derivative with respect to the time variable;
m A=Y .02 is the Laplacian on RN

m g > 2 is a real parameter.
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Conservation laws
Formally, the L? norm (the mass)

ot e = ( [ e eax)

and the energy

el ) = [, IVoe 0P ax—+ [ u(exl7ax

where
V= (8X1,...,8XN).

are preserved during the evolution.
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Conservation laws

Formally, the L? norm (the mass)

ot e = ( [ e eax)

and the energy

el ) = [, IVoe 0P ax—+ [ u(exl7ax

where

V= (0., 0ny)-

are preserved during the evolution.

Natural space associated to the equation?
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Sobolev space H!

Definition (Sobolev space H')

H'(RY;C) = {v € 13(RY;C) ] vve 2RV 0N}
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Sobolev space H!

Definition (Sobolev space H')
H'(RY;C) = {v € 12(RM;C) | Vv € 13(RY; )V}

= For the L2 mass: if v € HY(RV) then v belongs to L?(RN).
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Sobolev space H!

Definition (Sobolev space H')
H'(RM;C) = {v e 12(RV;C) | Vv € (3(RY; )V}

= For the L2 mass: if v € HY(RV) then v belongs to L?(RN).

m For the energy

1 1
E(v) = E/RN |Vv|?dx — (_1/R’V lv]9dx,

we need to ensure that v belongs to L9(RN).
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Sobolev embedding

Theorem (Sobolev embedding for H*)
The space HY(RN; C) is embedded in LP(RV;C) for all p € [2,2*[ where
o {ZN/(N —2) siN>3,

0 siN e {1,2}

is the critical Sobolev exponent.
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Sobolev embedding

Theorem (Sobolev embedding for H*)

The space HY(RN; C) is embedded in LP(RV;C) for all p € [2,2*[ where

o [2N/(N=2) siN>3,
T | siN e {1,2}

is the critical Sobolev exponent.
Conclusion: if 2 < q < 2%, the energy

1 1
E(v) = i/RN ]Vv\zdx— E/RNqux

is well defined for every function v € HY(RV; C).
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Well-posedness and blow-up

Theorem (J. Ginibre, G. Velo 1977)

For every initial condition 19 € HY(RN;C) and every q € ]2, 2*|, there
exists a time Tyax € |0, +00] and a unique continuous solution

(I [0, Tmax[ — HI(RN; C), t— U(t, )
to the nonlinear Schrédinger equation:

i5t¢ = —A¢ — W}‘q—2,¢}’ (t,X) € [07 Tmax[ X RN-
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Well-posedness and blow-up

Theorem (J. Ginibre, G. Velo 1977)

For every initial condition 19 € HY(RN;C) and every q € ]2, 2*|, there
exists a time Tyax € |0, +00] and a unique continuous solution

(U [0, Tmax[ — HI(RN; C), t— U(t, )
to the nonlinear Schrédinger equation:
iaﬂlf = —A¢ — WJ\C’_Z@ZJ’ (t,X) € [07 Tmax[ X RN-

Moreover, the mass and energy conservation laws are satisfied.

Damien Galant



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up
[nEs un| [EESEEEESEEEEEEEEE] OI11T O OIIIITd

Well-posedness and blow-up

Theorem (J. Ginibre, G. Velo 1977)

For every initial condition 19 € HY(RN;C) and every q € ]2, 2*|, there
exists a time Tyax € |0, +00] and a unique continuous solution

¥ [0, Trax[ — HY(RY;C), t — u(t,-)
to the nonlinear Schrédinger equation:
i0p) = —Ap — [9|972p,  (t,x) € [0, Trmax| x RV.
Moreover, the mass and energy conservation laws are satisfied.

If Tmax < 400, there is finite-time blowup:

im [Vt )z = +oo.

m.
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Existence of blow-up: Glassey's argument

If 9o € HY(RN; C) is such that xt9 € L2(RV; C), then the variance of
[ (t, x)[?

V(t) = /RN Pl (t, x)[? dx

is well-defined for all t € [0, Tax|-.
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Existence of blow-up: Glassey's argument

If 9o € HY(RN; C) is such that xt9 € L2(RV; C), then the variance of
[ (t, x)[?

V(e i= [ Pl(e )P dx
RN
is well-defined for all t € [0, Tax|-.

Integration by parts shows that

0uV(0) = 166(00) — I,
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Existence of blow-up: Glassey's argument

If 9o € HY(RN; C) is such that xt9 € L2(RV; C), then the variance of
[ (t, x)[?

V(e i= [ Pl(e )P dx
RN
is well-defined for all t € [0, Tax|-.

Integration by parts shows that

0uV(0) = 166(00) — I,

Therefore, if g > 2 + %, we obtain

8tt V(t) < 165(7;[)0)-
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Existence of blow-up: Glassey's argument
Theorem
If g > 2+ 4, ¢o € H(RY;C) is such that xiy € L>(RV;C) and

E(1hg) < 0, then the corresponding solution ¢ (t, x) of (NLS) blows up in
finite time.
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Existence of blow-up: Glassey's argument

Theorem

If g > 2+ 4, ¢o € H(RY;C) is such that xiy € L>(RV;C) and

E(1g) < 0, then the corresponding solution v(t,x) of (NLS) blows up in
finite time.

Proof.

Under the assumptions of the theorem, the function

[0, Tax|[ — [0, 400 : t — V(&)

is nonnegative and satisfies 0yt V/(t) < E(1)) < 0. O
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Existence of blow-up: Glassey's argument

Theorem
If g > 2+ 4, ¢o € H(RY;C) is such that xiy € L>(RV;C) and
E(1g) < 0, then the corresponding solution v(t,x) of (NLS) blows up in
finite time.
Proof.
Under the assumptions of the theorem, the function
[0, Tax|[ — [0, 400 : t — V(&)
is nonnegative and satisfies 0yt V/(t) < E(1)) < 0. O

R. T. Glassey. "On the blowing up of solutions to the Cauchy
problem for nonlinear Schrédinger equations”.
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Goal 1: Existence of solitary wave solutions for (NLS)

Opposed to blow-up: solitary waves of the form

U(t,x) = e Q(x)

where @ € HY(RV;R) = H1(RN) is a distributional solution of the
nonlinear elliptic equation

~AQ+Q=1Q"20Q. (PDEq)
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Goal 2: Equality case in the Gagliardo-Nirenberg inequality

Theorem (Gagliardo-Nirenberg inequality)

For all g € ]2,2*[, there exists a constant C(q) > 0 such that for every
function v € HY(RV; C), we have

lulles < C(q) llulliz* [V ullz:

where

Damien Galant
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Goal 2: Equality case in the Gagliardo-Nirenberg inequality

Theorem (Gagliardo-Nirenberg inequality)

For all g € ]2,2*|, there exists a constant C(q) > 0 such that for every
function v € HY(RV; C), we have

lulles < C(q) llulliz* [V ullz:

where

Inequality + conservation laws — non-explosion criteria.
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NLS, blow-up Solitary waves ODE approach
oo s EESEESEEEEEEEEE) oI

Blow-up thresholds log-log blow-up
O OIIIITd

Goal 2: Equality case in the Gagliardo-Nirenberg inequality

Theorem (Gagliardo-Nirenberg inequality)

For all g € ]2,2*|, there exists a constant C(q) > 0 such that for every
function v € HY(RV; C), we have

lulles < C(q) llulliz* [V ullz:

where

Inequality + conservation laws — non-explosion criteria.

Optimal constant C(q) — best criteria;
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Goal 2: Equality case in the Gagliardo-Nirenberg inequality

Theorem (Gagliardo-Nirenberg inequality)

For all g € ]2,2*[, there exists a constant C(q) > 0 such that for every
function v € HY(RV; C), we have

lulles < C(q) llulliz* [V ullz:

where

Inequality + conservation laws — non-explosion criteria.
Optimal constant C(q) — best criteria;

Passing to the modulus — only considering u > 0 is enough.

Damien Galant
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Variational formulation

Gagliardo-Nirenberg inequality:

lulles < Ca) llullz® 1V ull7-

Damien Galant
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Variational formulation

Gagliardo-Nirenberg inequality:
lullea < C(q) lulliz® [V ullZ.
Goal: minimize the functional

Nl vl

lullfs

J(u):

on HY(RM)\ {0}.

Damien Galant



NLS, blow-up Solitary waves ODE approach Blow-up thresholds
oo [uSS SEEEEEEEEEEEE] oo

log-log blow-up
[EEsEsEEnnn] [EEEEEEE]

Li n k between the tWO goa |S (Existence of solitary wave solutions for (NLS) )

Equality case for the Gagliardo-Nirenberg inequality

The functional J is of class C* on HY(RV)\ {0} and its differential is
given by

d7(u) - h = J(u) <q|(|1u—”_%:) /RN u(x)h(x) dx

+ ||VCLS||{2 [, Vu(x) - Vh(x) dx
_ ﬁ /R (01T u() h(x) dx>

for every h € HY(RN).

Damien Galant
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Li n k between the tWO goa |S (Existence of solitary wave solutions for (NLS) )

Equality case for the Gagliardo-Nirenberg inequality

The functional J is of class C* on HY(RV)\ {0} and its differential is
given by

d7(u) - h = J(u) <q|(|luf|_§:) /RN u(x)h(x) dx

gs
v -Vh(x)d
+ ||Vu||%2/ u(x) (x) dx

RN

—mﬁgﬁuwww*wwmmdﬁ

for every h € HY(RN). If u is a critical point of 7, we have

1—5)||Vul? Vul?
g (Tl 9
sllullZ> sllull{q

lul972u.

Damien Galant
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Invariances of the functional

The functional (1-s)
—S
2 v

lulls

J(u) :

N

2

where s — (92N

is invariant by:

Q

Damien Galant
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Invariances of the functional

The functional (1-s)
—S
2 v

lulls

J(u) :

where is invariant by:

m translations u(x) — u(x — x0) (xo € RV);

Damien Galant
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Invariances of the functional

The functional (1-s)
—S
2 v

lulls

J(u) :

where is invariant by:

m translations u(x) — u(x — x0) (xo € RV);
m homotheties u(x) — pu(x) (n > 0);
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Invariances of the functional

The functional (1-s)
—S
2 v

lulls

J(u) :

where is invariant by:
m translations u(x) — u(x — x0) (xo € RV);
m homotheties u(x) — pu(x) (n > 0);
m dilations u(x) — u(Ax) (A > 0);
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Invariances of the functional

The functional (1-s)
—S
el vl

lulls

J(u) :

where is invariant by:
m translations u(x) — u(x — x0) (xo € RV);
m homotheties u(x) — pu(x) (n > 0);
m dilations u(x) — u(Ax) (A > 0);

m passings to the absolute value u(x) — |u(x)].

Damien Galant
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Direct method from calculus of variations

Let's consider a minimizing sequence (u,)n,>1 € H*(RN)\ {0}, i.e. such
that

T (up) —— inf J(uv).
n=reo ueH'(RV)\{0}

Damien Galant
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Direct method from calculus of variations

Let's consider a minimizing sequence (u,)n,>1 € H*(RN)\ {0}, i.e. such
that

T (up) —— inf J(uv).
n=reo ueH'(RV)\{0}

We would like to extract a subsequence of (up),>1 converging (weakly in

HY(RN) and strongly in L9(RM)) to a function u € H*(RV)\ {0} and show
that u is a minimum of J.

Damien Galant
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Compactness

Problem: loss of compactness by translations. If u is a global minimum of
J and if £ € RN\ {0}, then the sequence of translates

(U(X - ”5)),721

is a sequence of indistinguishable minima. If does not admit any strongly
convergent subsequence in L9(RNV).

Damien Galant
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Compactness

Problem: loss of compactness by translations. If u is a global minimum of
J and if £ € RN\ {0}, then the sequence of translates

(U(X - ’75)),721

is a sequence of indistinguishable minima. If does not admit any strongly
convergent subsequence in L9(RNV).

Solution: work on the space H}(R"N) of H*(RN) radial functions.
Theorem (W. Strauss 1977)

If N > 2, the embedding of H*(RV) into LP(RN) is compact for every
p € 12,2%.

Damien Galant
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Compactness

Problem: loss of compactness by translations. If v is a global minimum of
J and if £ € RV\ {0}, then the sequence of translates

(u(x - ’75)),21

is a sequence of indistinguishable minima. If does not admit any strongly
convergent subsequence in L9(RV).

Solution: work on the space H}(R"N) of H*(RN) radial functions.
Theorem (W. Strauss 1977)

If N > 2, the embedding of H*(RV) into LP(RN) is compact for every
p € 12,2%.

W. A. Strauss. “Existence of solitary waves in higher dimensions”.
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Reduction to the nonnegative radial case
Data: minimizing sequence (up),>1 € HY(RV)\ {0} such that

J(up) —— inf J(u).
n=reo ueH'(RV)\{0}

Damien Galant
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Reduction to the nonnegative radial case
Data: minimizing sequence (up),>1 € HY(RV)\ {0} such that

J(up) —— inf J(u).
n=reo ueH'(RV)\{0}

m By passing to the absolute value, we can suppose that u, > 0. We
can thus work in

HLRY) = {u e H'RY) ‘ u>0}.

Damien Galant
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Reduction to the nonnegative radial case
Data: minimizing sequence (up),>1 € HY(RV)\ {0} such that

J(up) —— inf J(u).
n=reo ueH'(RV)\{0}

m By passing to the absolute value, we can suppose that u, > 0. We
can thus work in

HLRY) = {u e H'®RY) | u > 0}.
= We would like to map every function u € H}(RV) to a function
vt € HY(RN) N H}(RN) such that

T (") < J(u).

Damien Galant
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Symmetric decreasing rearrangement

Given a positive function u: RN — [0, +00], we consider its superlevel sets
N
{x e R" | u(x) > t}

and we symmetrize them in an open ball centered in 0 with the same
volume.

] [x]

Damien Galant
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Symmetric decreasing rearrangement

Given a positive function u: RN — [0, +00], we consider its superlevel sets
N
{x e R" | u(x) > t}

and we symmetrize them in an open ball centered in 0 with the same
volume.

A /N ,
AN
x| X

Damien Galant
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Symmetric decreasing rearrangement

Given a positive function u: RN — [0, +00], we consider its superlevel sets
N
{x e R" | u(x) > t}

and we symmetrize them in an open ball centered in 0 with the same
volume.

]
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Symmetric decreasing rearrangement

Given a positive function u: RN — [0, +00], we consider its superlevel sets
N
{x e R" | u(x) > t}

and we symmetrize them in an open ball centered in 0 with the same
volume.

/\ : :
SN N T
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Symmetric decreasing rearrangement

Given a positive function u: RN — [0, +00], we consider its superlevel sets
N
{x e R" | u(x) > t}

and we symmetrize them in an open ball centered in 0 with the same
volume.

]
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: 1
Rearrangement in H
Theorem (Conservation of L? norms, Pélya-Szeg6 inequality)
If u e HY(RN), then u* also belongs to H:(RN) and we have
]2 = lull2,

IVuH|lz < [[Vull 2.

] x|

Damien Galant
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Conclusion:

Existence of a radial positive minimum of 7

Steps:

(Un) o7 — (lunl),<; — (Jtn]"),~,; —> compacity of the embedding

Damien Galant
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Conclusion:
Existence of a radial positive minimum of 7

Steps:

(u,,)n>1 — (\un\)n>1 — (|u,,|*)n>1 — compacity of the embedding

Theorem (M.l. Weinstein 1982)

The equation
—AQ+Q=1Q"%Q (PDEg)

admits a radial strictly positive solution Q@ € H*(RN)\ {0} reaching the
global minimum of J on HY(RV)\ {0}.

Damien Galant
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Conclusion:
Existence of a radial positive minimum of 7

Steps:

(u,,)n>1 — (\u,,|)n>1 — (|u,,|*)n>1 — compacity of the embedding

Theorem (M.l. Weinstein 1982)

The equation

~AQ+Q=1Q?Q (PDEg)
admits a radial strictly positive solution Q@ € H*(RN)\ {0} reaching the
global minimum of J on HY(RV)\ {0}.

M. |. Weinstein. "Nonlinear Schrédinger equations and sharp
interpolation estimates”.

Damien Galant
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Existence of sign-changing radial bound states
Theorem (Bartsch-Willem, 1993)
For every k > 0, there exists a radial sign-changing solution

Qk(x) = uk(|x]) € HL(RN) such that [0, +oc[ — R : t + uk(t) has
exactly k roots.

0\/
)

Figure: Graphs of u; and u; for N=3 and g =3

Damien Galant
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Existence of sign-changing radial bound states

Theorem (Bartsch-Willem, 1993)

For every k > 0, there exists a radial sign-changing solution

Qk(x) = uk(|x]) € HL(RN) such that [0, +oc[ — R : t + uk(t) has
exactly k roots.

0\/
)

Figure: Graphs of u; and u; for N=3 and g =3

T. Bartsch and M. Willem. “Infinitely many radial solutions of a
semilinear elliptic problem on RV".

Damien Galant
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Existence of nonradial bound states

Theorem (Bartsch-Willem, 1993)

If N =4 or N > 6, then (PDEq) has a nonradial solution.

Damien Galant
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Existence of nonradial bound states

Theorem (Bartsch-Willem, 1993)
If N =4 or N > 6, then (PDEq) has a nonradial solution.

The main strategy consists in constructing (using variational methods)
solutions based on another type of symmetry using the group

G = O(m) x O(m) x O(N —2m),

then proving that the corresponding solutions are not radial since both
symmetries are “incompatible”.

Damien Galant
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Existence of nonradial bound states

Theorem (Bartsch-Willem, 1993)
If N =4 or N > 6, then (PDEq) has a nonradial solution.

The main strategy consists in constructing (using variational methods)
solutions based on another type of symmetry using the group
G = O(m) x O(m) x O(N —2m),

then proving that the corresponding solutions are not radial since both
symmetries are “incompatible”.

T. Bartsch and M. Willem. “Infinitely many nonradial solutions of a
Euclidean scalar field equation”.

M. Willem. Minimax theorems.

Damien Galant
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Existence of bound states without any symmetry

Theorem (W. Ao, M. Musso, F. Pacard, J. Wei 2016)

There exist infinitely many H*(R”; R) solutions of

~AQ+Q=¢Q°

whose maximal group of symmetry reduces to the identity.

Damien Galant
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Existence of bound states without any symmetry

Theorem (W. Ao, M. Musso, F. Pacard, J. Wei 2016)

There exist infinitely many Hl(RQ; R) solutions of
—AQ+ Q=@

whose maximal group of symmetry reduces to the identity.

The very rough idea is to start with an approximate solution of the form

Sapprox = Z Q( - Z) - Z Q( - zl)

zeZ+ zleZ—-

for some well-chosen finite sets of points Z+, Z~ C R.

Damien Galant
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Existence of bound states without any symmetry

Theorem (W. Ao, M. Musso, F. Pacard, J. Wei 2016)

There exist infinitely many H*(R”; R) solutions of
~AQ+Q=Q°
whose maximal group of symmetry reduces to the identity.

The very rough idea is to start with an approximate solution of the form

Sapprox = Z Q( - Z) - Z Q( - ZI)
zeZ+ zleZ—-

for some well-chosen finite sets of points Z+, Z~ C R.

W. Ao et al. “Solutions without any symmetry for semilinear elliptic
problems”.

Damien Galant
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Qualitative properties (of all H(R") solutions of (PDEg))

m elliptic bootstrap — all H*(RV) solutions of (PDEg) are C2(RM);

Damien Galant
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Qualitative properties (of all H(R") solutions of (PDEg))

m elliptic bootstrap — all H*(RV) solutions of (PDEg) are C2(RM);

m solutions of (PDEg) decay exponentially at infinity, as well as their
first and second derivatives;

Damien Galant
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Qualitative properties (of all H(R") solutions of (PDEg))

m elliptic bootstrap — all H*(RV) solutions of (PDEg) are C2(RM);

m solutions of (PDEg) decay exponentially at infinity, as well as their
first and second derivatives;

= positive solutions of (PDEg) are C>(RN);

Damien Galant
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Qualitative properties (of all H(R") solutions of (PDEg))

m elliptic bootstrap — all H*(RV) solutions of (PDEg) are C2(RM);

m solutions of (PDEg) decay exponentially at infinity, as well as their
first and second derivatives;

= positive solutions of (PDEg) are C>(RN);
= moving plane argument — all H1(R") positive solutions of (PDEg)
are radial up to translation.

B. Gidas, W. M. Ni, and L. Nirenberg. “Symmetry and related
properties via the maximum principle”.

Damien Galant
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Energy and Pohozaev identites

Theorem

If Q € HY(RN) is a solution to (PDEg), then

i} B} i} X - 2N,
IVRIZ + QI = QUL (N=2)[VQIE + NIQIE = FIIQIIZq-

Damien Galant
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Energy and Pohozaev identites

Theorem

If Q € HY(RN) is a solution to (PDEg), then

i} ) iy X - 2N,
IVRIZ + QI = QUL (N=2)[VQIE + NIQIE = FIIQIIZq-

S. . Pohozaev. "On the eigenfunctions of the equation
Au+ Mf(u)=0".

Damien Galant



NLS, blow-up Solitary waves ODE approach
oo O oI

Blow-up thresholds log-log blow-up
O OIIIITd

Energy and Pohozaev identites

Theorem

If Q € HY(RN) is a solution to (PDEg), then

i} ) iy X - 2N,
IVRIZ + QI = QUL (N=2)[VQIE + NIQIE = FIIQHZq-

S. . Pohozaev. "On the eigenfunctions of the equation
Au+ Mf(u)=0".

Using those identities, one can show that

ilellle
q

J(Q) =

Damien Galant
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Energy of solitary wave solutions

The solutions @ € H'(RV) to (PDEg) correspond to solitary wave
solutions

W(t,x) = € Q(x)
to (NLS).

Damien Galant
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Energy of solitary wave solutions

The solutions @ € H'(RV) to (PDEg) correspond to solitary wave
solutions

U(t, x) = et Q(x)
to (NLS). Their energy is given by

1 1
E@W(t,) = 5IVe(t)E — Clv(e I
1, = 1 .
= 3lIValE — Il

_ 1 N(q —2) A9
_E<T_1>||Q||Lq-

Damien Galant
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Energy of solitary wave solutions

The solutions @ € H'(RV) to (PDEg) correspond to solitary wave
solutions

U(t, x) = et Q(x)
to (NLS). Their energy is given by
1 1
E@W(t,) = 5IVe(t)E — Clv(e I

1 o 1 -~
= Z[IVQIZ — Z IR

IV QIR — 21217
_ 1 N(q —2) A9
—q( . 1ﬂmm.

Therefore, solitary waves have a negative/zero/positive energy depending
OnWhetherq<2+%, q:2—|—%orq>2+%'

Damien Galant
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Studying radial solutions using ODEs

C? radial solutions of (PDEg) correspond to solutions of the following
Cauchy problem:

Deeuy + §0puy + |uy (£)]9 20y (8) — uy(t) =0,
ODE,
{ Uy(O) =Y, at’uy(o) = 0, ( )

where A\ =N —1and t — |x|.

Damien Galant
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Studying radial solutions using ODEs

C? radial solutions of (PDEg) correspond to solutions of the following
Cauchy problem:

Deeuy + §0puy + |uy (£)]9 20y (8) — uy(t) =0,
ODE,
{ Uy(O) =Y, 8t’uy(o) = 0, ( )

where A\ =N —1and t — |x|.

The existence of solutions to (ODE,) converging to 0 for t — +o00
provides an alternate proof of existence of solitary waves.

Damien Galant



NLS, blow-up Solitary waves ODE approach

Blow-up thresholds log-log blow-up
EEEEnEE] [EESEEEESEEEEEEEEE] | sunnns] EEEEEEEE]

[EEEEEEEEEE]

Studying radial solutions using ODEs

C? radial solutions of (PDEg) correspond to solutions of the following
Cauchy problem:

Deeuy + §0puy + |uy (£)]9 20y (8) — uy(t) =0, (ODE,)
Uy(O) =Y, 8th(0) = 07
where A\ =N —1and r — x|

The existence of solutions to (ODE,) converging to 0 for t — +o00
provides an alternate proof of existence of solitary waves.

H. Berestycki, P.-L. Lions, and L. A. Peletier. “An ODE approach to
the existence of positive solutions for semilinear problems in RV".

Damien Galant
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Studying radial solutions using ODEs

C? radial solutions of (PDEg) correspond to solutions of the following
Cauchy problem:

Deeuy + §0puy + |uy (£)]9 20y (8) — uy(t) =0,
ODE,
{ Uy(O) =Y, 8t’uy(o) = 0, ( )

where A\ =N —1and t — |x|.

The existence of solutions to (ODE,) converging to 0 for t — +o00
provides an alternate proof of existence of solitary waves.

H. Berestycki, P.-L. Lions, and L. A. Peletier. “An ODE approach to
the existence of positive solutions for semilinear problems in RV”

K. MclLeod, W. C. Troy, and F. B. Weissler. “Radial solutions of
Au+ f(u) = 0 with prescribed numbers of zeros”.

Damien Galant



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up
oo [ENEEEEEEEEEEEEEEE] [s_sssns] [EEsEsEEnnn] [EEEEEEE]

Interpretation: dynamics of a nonlinear damped oscillator

Potential:
w9 Ju?

V(u): o 5

Damien Galant
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Interpretation: dynamics of a nonlinear damped oscillator

Potential:
w9 Ju?

V(u): o 5

ODE:
Dty + 20euy + V'(uy(t)) = 0.

Damien Galant
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Interpretation: dynamics of a nonlinear damped oscillator

Potential:

ODE:
Dty + 20euy + V'(uy(t)) = 0.

T. Tao. Nonlinear dispersive equations. \/ol. 106. CEMS Regional
Conference Series in Mathematics. Local and global analysis.
Published for the Conference Board of the Mathematical Sciences,
Washington, DC; by the American Mathematical Society,
Providence, RI, 2006, pp. xvi+373.

R. L. Frank. “Ground states of semi-linear PDEs. Lecture notes from
the “Summer- school on Current Topics in Mathematical Physics”,
CIRM Marseille”. In: Sept. 2013.

Damien Galant



NLS, blow-up Solitary waves ODE approach Blow-up thresholds log-log blow-up
oo [ENEEEEEEEEEEEEEEE] [an msns} [EEsEsEEnnn] [EEEEEEE]

The potential well

V()

= (q/2)77 > 1

Damien Galant
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Behavior of solutions as t — +o00

Energy (unrelated to the energy of NLS as ¢ = x| in the ODE setting):

H(uy (t), druy (t)) = %Iatuy(f)l2 + V(uy (1))

Damien Galant
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Behavior of solutions as t — 400
Energy (unrelated to the energy of NLS as ¢ = x| in the ODE setting):
1
H(uy (£), Oeuy (1)) = 5 10euy ()] + V(uy (1))
Damping:

Oe(t = Hlwy (), 0ety (1)) = B, (1) < 0

Damien Galant
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Behavior of solutions as t — o0
Energy (unrelated to the energy of NLS as ¢ = x| in the ODE setting):

H(uy (t), druy (t)) = %Iatuy(f)l2 + V(uy (1))

Damping:

Oe(t = Hlwy (), 0ety (1)) = B, (1) < 0

Theorem

Every solution of (ODE,) converges to —1, 0 or 1 as t — +o0.

Damien Galant
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Behavior of solutions as t — o0
Energy (unrelated to the energy of NLS as ¢ = x| in the ODE setting):

H(uy (t), druy (t)) = %Iatuy(l‘)l2 + V(uy (1))

Damping:
A
0r(t = H(uy (1), Beu (1)) = — 210y, (1) <0
Theorem

Every solution of (ODE,) converges to —1, 0 or 1 as t — +o0.

A. Cabot, H. Engler, and S. Gadat. "On the long time behavior of
second order differential equations with asymptotically small
dissipation”.

Damien Galant
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Shooting method: illustration

See the blackboard and animations!

Used parameters:

Damien Galant



NLS, blow-up Solitary waves ODE approach Blow-up thresholds
O OO

log-log blow-up
[snuns =] [EEEEEEEEEE] OIIIITd

Uniqueness of the ground state: history

Theorem

There exists a unique y > 0 such that the associated solution of (ODE,)
(with u(0) = y) is a “ground state solution”, i.e.

vVt >0, uy(t) >0, lim u(t)=0.

t—-+o00

Damien Galant
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Uniqueness of the ground state: history

Theorem

There exists a unique y > 0 such that the associated solution of (ODE,)
(with u(0) = y) is a “ground state solution”, i.e.

vVt >0, uy(t) >0, lim u(t)=0.

t—-+o00

C. V. Coffman. “Uniqueness of the ground state solution for

Au— u—+ u® =0 and a variational characterization of other
solutions”.

Damien Galant
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Uniqueness of the ground state: history

Theorem

There exists a unique y > 0 such that the associated solution of (ODE,)
(with u(0) = y) is a “ground state solution”, i.e.

vVt >0, uy(t) >0, lim u(t)=0.

t—-+o00

C. V. Coffman. “Uniqueness of the ground state solution for

Au— u—+ u® =0 and a variational characterization of other
solutions”.

M. K. Kwong. “Uniqueness of positive solutions of Au— v+ uP =0
in R™.

Damien Galant
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Uniqueness of the ground state: history

Theorem
There exists a unique y > 0 such that the associated solution of (ODE,)
(with u(0) = y) is a “ground state solution”, i.e.

vVt >0, uy(t) >0, lim u(t)=0.

t—-+o00

C. V. Coffman. “Uniqueness of the ground state solution for

Au— u—+ u® =0 and a variational characterization of other
solutions”.

M. K. Kwong. “Uniqueness of positive solutions of Au— v+ uP =0
in R™.

K. McLeod. "Uniqueness of positive radial solutions of
Au+ f(u)=0in R". II".

Damien Galant
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Uniqueness: what about nodal solutions?

Conjecture

For every k € N, there exists a unique initial condition y, > 0 such that
the associated solution uy, (t) has exactly k roots and converges to 0 as
t — +o0.

Open for most values of g and A, even for k = 1.

Damien Galant
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Uniqueness: what about nodal solutions?

Conjecture

For every k € N, there exists a unique initial condition y, > 0 such that

the associated solution uy, (t) has exactly k roots and converges to 0 as
t — +o0.

Open for most values of g and A, even for k = 1.

Recent computer-assisted proof (for fixed k, g and A = N — 1):

A. Cohen, Z. Li, and W. Schlag. Uniqueness of excited states to
—Au+ u— u® =0 in three dimensions.

Damien Galant
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Back to the Gagliardo-Nirenberg inequality

Uniqueness of positive solutions to (PDEg) allows to characterize all
equality cases in the Galigardo-Nirenberg inequality.

Damien Galant
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Back to the Gagliardo-Nirenberg inequality

Uniqueness of positive solutions to (PDEg) allows to characterize all
equality cases in the Galigardo-Nirenberg inequality.

Theorem (Equality cases in the Gagliardo-Nirenberg inequality)
The global minima on HY(RN)\ {0} of functional

Nl v

lullfe

J(u) :

)
where , are the functions of the form

u(x) = nQA(x = x0))
where i € R\ {0}, A > 0 and xop € RV.

Damien Galant
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Non-explosion criteria

Since Q is a global minimum of 7, we obtain that

21QUE?
q

1—
ulfE ) | vl

lullfe

J(Q) < J(u)

for all u € HY(RN)\ {0}.

Damien Galant
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Non-explosion criteria

Since Q is a global minimum of 7, we obtain that

21QUE?
q

1—
ulfE ) | vl

lullfe

J(Q) < J(u)

for all u € HY(RN)\ {0}.

Conservation laws and the Gagliardo-Nirenberg inequality with optimal
constant J(Q) imply that, for all t € [0, Tonax],

2
IVe(t, ) 172 < 2E(3ho) + G e

oll 35 |1V e, -)11%
Q]9

< 2&(vpo) +

Damien Galant
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Non-explosion below the mass-critical exponent

For all t € [0, Tihax[, we obtained the bound

q(1-s) (|98
HV1/J(t,)H%2 < 25(1/)0)_{_ ‘WJOH[} HQ"l‘qV_?z/J(t, )H[_2.
12

Damien Galant
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Non-explosion below the mass-critical exponent

For all t € [0, Tihax[, we obtained the bound

ol 35 | V(t, )| %

IVu(t, )2 < 26 (o) +
QI

If g <2+ 7, then gs < 2 (since ), so we obtain a uniform
bound in t for ||[V¢(t,-)||7,, and there is no blow-up.

Damien Galant
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Many features of the mass-critical exponent

m Glassey's argument applies iff g > 2 + %;

Damien Galant
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Many features of the mass-critical exponent

m Glassey's argument applies iff g > 2 + %;

m Solitary waves have a negative/zero/positive energy depending on
whether ¢ <2+ 4, q =2+ 7 or g > 2+ +;

Damien Galant
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Many features of the mass-critical exponent

m Glassey's argument applies iff g > 2 + %;
m Solitary waves have a negative/zero/positive energy depending on
whether g <2+ 4, =2+ 4 or ¢g>2+ 4;

m Conservation laws and the Gagliardo-Nirenberg inequality imply a
uniform bound for ||V¢(t,-)||?, for any ¢ € HY(RN; C) iff
g<2+ 4.

Damien Galant
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Many features of the mass-critical exponent

m Glassey's argument applies iff g > 2 + %;

m Solitary waves have a negative/zero/positive energy depending on
whether g <2+ 4, =2+ 4 or ¢g>2+ 4;

m Conservation laws and the Gagliardo-Nirenberg inequality imply a
uniform bound for ||V¢(t,-)||?, for any ¢ € HY(RN; C) iff
g<2+ 4.

m When g =2+ %, (NLS) enjoys an extra pseudo-conformal symmetry.
If 4(t, x) solves (NLS) for g = 2+ 7, so does

T \3 tT  xT i
4(T—t).
(T—t) w<T—t’T—t)e

Damien Galant
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Many features of the mass-critical exponent

m Glassey's argument applies iff g > 2 + %;

m Solitary waves have a negative/zero/positive energy depending on
whether g <2+ 4, =2+ 4 or ¢g>2+ 4;

m Conservation laws and the Gagliardo-Nirenberg inequality imply a
uniform bound for ||V¢(t,-)||?, for any ¢ € HY(RN; C) iff
g<2+ 4.

m When g =2+ %, (NLS) enjoys an extra pseudo-conformal symmetry.
If 4(t, x) solves (NLS) for g = 2+ 7, so does

T \3 tT  xT i
4(T—t).
(T—t) w<T—t’T—t)e

From now on, we consider the mass-critical case g =2 + 1.
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Blow-up thresholds in the mass-critical case

Ifg=2+ %, we can rewrite the bound

ol 35 | Vs(t, -)I|%

Vib(t, )12 < 28 (o) + - ,
IV (e, Il (o) Q152

where , as

e (1 O e
U e T

- _2 _ _ 4
since s =2 andso g(l —s) =qg—2= 3.
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Blow-up thresholds in the mass-critical case

Ifg=2+ %, we can rewrite the bound

ol 35 | Vs(t, -)I|%

Vib(t, )12 < 28 (o) + - ,
IV (e, Il (o) Q152

where , as

e (1 O e
U e T

- _2 _ _ 4
since s =2 andso g(l —s) =qg—2= 3.

If [|tbol| 2 < || Q| 12, we obtain a uniform bound for || V4 (t,-)[|?, and there
is no blow-up.
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Existence of minimal mass blow-up solutions

If ||40]| 2 = || Q]| 2, blow-up is possible. The explicit solution

sr(t) = ()" 2T e (i — aioly)) ()

obtained by the pseudo-conformal transform blows up at time t = T.

Damien Galant



NLS, blow-up Solitary waves ODE approach
oI OI11T

Blow-up thresholds log-log blow-up
[ussss smss) oo

Existence of minimal mass blow-up solutions
If ||40]| 2 = || Q]| 2, blow-up is possible. The explicit solution

sr(t ) = ()" QR eo(i( - i)

obtained by the pseudo-conformal transform blows up at time t = T.

Remark

The complex exponential is very important. Indeed, for all x € RV,

|s7(0, )] = |Q(X)I;

but the initial condition 1y = Q gives rise to the solitary wave solution
e''Q(x), which does not blow-up!
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log-log blow-up
Existence of minimal mass blow-up solutions

If ||vol|2 = || Q]| 2, blow-up is possible. The explicit solution

st = (75) " Pe ) e (i - i) ()

obtained by the pseudo-conformal transform blows up at time t = T.

Remark

The complex exponential is very important. Indeed, for all x € RV,
|s7(0,x)| = |Q(x),

but the initial condition 1y = Q gives rise to the solitary wave solution
e''Q(x), which does not blow-up!

It turns out that solutions of the form (1) are the only minimal mass
solutions of (NLS) when ¢ =2 + %, up to the symmetries of the equation.
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Classification of minimal mass solutions

Theorem (F. Merle 1993)

If {(t, x) is a solution of (NLS), defined for t € [0, T[ and blowing up for
t = T, then there exist § € R,w € |0, +oco[,xo0 € RN, x; € RN such that

w

Wo = (?)N/2ei6—i|x—x1/4T+iw2/TQ<w(X —TX1 —Xo))-
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Classification of minimal mass solutions

Theorem (F. Merle 1993)

If {(t, x) is a solution of (NLS), defined for t € [0, T[ and blowing up for
t = T, then there exist § € R,w € |0, +oco[,xo0 € RN, x; € RN such that

w

Wo = <?)N/Zei6—i|x—x1/4T+iw2/TQ<w(X —TX1 —Xo))-

F. Merle. “Determination of blow-up solutions with minimal mass
for nonlinear Schrédinger equations with critical power™.
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Further study of st(t, x)
If N2 )
s7(t%) = (750 " Q3T e (il — 7))

then the variance of |s7(t,-)|? is given by

V(t) = /RN Ix|?]s7(2, x) P dx
- (T-,; t)N/RN |x|2Q<TXz-t)2dX

T—1t\?
= %4
() vo

— 0

t—T
The variance identity implies that

2
o V(t) = ﬁV(O) =16&(s7(t,-))
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Further study of st(t, x)

m The pseudo-conformal solutions have a strictly positive energy;
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Further study of st(t, x)

m The pseudo-conformal solutions have a strictly positive energy;
m The variance of s7(t,-) convergesto Q0 as t — T;
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Further study of st(t, x)

m The pseudo-conformal solutions have a strictly positive energy;
m The variance of s7(t,-) convergesto Q0 as t — T;
m Forall t € [0, T[, we have

Is7(t: )2 = [1Qlle-
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Further study of st(t, x)

m The pseudo-conformal solutions have a strictly positive energy;
m The variance of s7(t,-) convergesto Q0 as t — T;
m Forall t € [0, T[, we have

Is7(t: )2 = [1Qlle-

m The two previous points imply that

|s7(t,-)

S
2 =50, 100,
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Further study of st(t, x)

m The pseudo-conformal solutions have a strictly positive energy;
m The variance of s7(t,-) convergesto Q0 as t — T;
m Forall t € [0, T[, we have

Is7(t: )2 = [1Qlle-

m The two previous points imply that

S'(RV )
[s(t, )" == |QIZ20o.
m Blow-up rate:
_ TIVQlle
Vsr(t, )iz =
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Bourgain-Wang solutions

Question: what happens if ||{g]];2 > || Q]| 12?
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Bourgain-Wang solutions

Question: what happens if ||{g]];2 > || Q]| 12?
Theorem (J. Bourgain, W. Wang 1997)

If N =1 or N =2, the mass-critical (NLS) equation admits solutions

P(t,x) € C([0, T[, HY(RV; C)) with [|¢(t, )|l 2 > || Q|2 blowing up at
time T > 0 at the rate

C
T—t

[[4(t, ez ~

near blow-up time.
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Bourgain-Wang solutions

Question: what happens if ||{g]];2 > || Q]| 12?

Theorem (J. Bourgain, W. Wang 1997)

If N =1 or N =2, the mass-critical (NLS) equation admits solutions
W(t,x) € C([0, T[, H'(RN; C)) with [[(t, )2 > [|Qll > blowing up at
time T > 0 at the rate

C
T—t

(8, )l 2 ~
near blow-up time.

J. Bourgain and W. Wang. “Construction of blowup solutions for
the nonlinear Schrédinger equation with critical nonlinearity”.
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The log-log blow-up rate

m st solutions have a strictly positive energy, while Glassey's argument
shows that there are many solutions with a negative energy;
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The log-log blow-up rate

m st solutions have a strictly positive energy, while Glassey's argument
shows that there are many solutions with a negative energy;
= Solutions blowing up with rate =<

+—; are not observed in numerical
simulations;
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The log-log blow-up rate

m st solutions have a strictly positive energy, while Glassey's argument

shows that there are many solutions with a negative energy;

m Solutions blowing up with rate % are not observed in numerical

simulations:

m In the 1980s, it was suspected that the log-log law

loz | log( T — 1/2
o (E, Y2 ~ <°gl o8(T - )r>

was the generic blow-up speed.
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The log-log blow-up rate

m st solutions have a strictly positive energy, while Glassey's argument

shows that there are many solutions with a negative energy;

m Solutions blowing up with rate % are not observed in numerical

simulations;
m In the 1980s, it was suspected that the log-log law

loz | log( T — 1/2
o (E, Y2 ~ <°gl o8(T - )r>

was the generic blow-up speed.
Historical context: see e.g.

G. Fibich, F. Merle, and P. Raphaél. “Proof of a spectral property
related to the singularity formation for the L? critical nonlinear
Schrédinger equation”.
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Results of Frank Merle and Pierre Raphaél (context)

m The following results will assume N =1 or N > 2 and a certain
“spectral property” holds true (see later).
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Results of Frank Merle and Pierre Raphaél (context)

m The following results will assume N =1 or N > 2 and a certain
“spectral property” holds true (see later).

m They concern the mass-critical case g =2 + %.
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Results of Frank Merle and Pierre Raphaél (context)
m The following results will assume N =1 or N > 2 and a certain
“spectral property” holds true (see later).
m They concern the mass-critical case g =2 + %.
= We will consider initial profiles ¢9 € H'(RV; C) satisfying

1QII% < lIoll?2 < QI + o 2)

For all N, the following theorems will provide the existence of a
suitable a* > 0 such that the conclusions of the theorems hold for all
Yo € HY(RV; C) such that (2) holds.
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Results of Frank Merle and Pierre Raphaél (context)
m The following results will assume N =1 or N > 2 and a certain
“spectral property” holds true (see later).
m They concern the mass-critical case g =2 + %.
= We will consider initial profiles ¢9 € H'(RV; C) satisfying

1QII% < lIoll?2 < QI + o 2)

For all N, the following theorems will provide the existence of a
suitable a* > 0 such that the conclusions of the theorems hold for all
Yo € HY(RV; C) such that (2) holds.

= We will denote the associated solution to (NLS) by #(t,-) and assume
its maximal interval of definition [0, Tinax[, with Tiax € ]0, +00].
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Results of Frank Merle and Pierre Raphaél (context)
m The following results will assume N =1 or N > 2 and a certain
“spectral property” holds true (see later).
m They concern the mass-critical case g =2 + %.
= We will consider initial profiles ¢9 € H'(RV; C) satisfying

1QII% < lIoll?2 < QI + o 2)

For all N, the following theorems will provide the existence of a
suitable a* > 0 such that the conclusions of the theorems hold for all
Yo € HY(RV; C) such that (2) holds.
= We will denote the associated solution to (NLS) by #(t,-) and assume
its maximal interval of definition [0, Tinax[, with Tiax € ]0, +00].
The statements that follow are taken from the Theorem 1 of
G. Fibich, F. Merle, and P. Raphaél. "Proof of a spectral property
related to the singularity formation for the L? critical nonlinear
Schrédinger equation”.
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Description of the singularity

Theorem

Assume that u(t) blows up in finite time, i.e. Tyax < +00. Then there

exist parameters (A(t), x(t),y(t)) € ]0, +oo[ x RN x R and an asymptotic
profile u* € L?(RN) such that

A(t) t—T

Moreover, the blow-up point is finite in the sense that

W(t, ) — )\(t:)lN/zQ<X —X(t)> () L,
x(t) —F x(T) e RV.
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Estimates on the blow up speed

Theorem
We have either

1/2
IVt s (T 1
IVal: \loglloa(T 1)) 7 var

or

C(vo)
[Vo(t, e > o

ast— T.
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Sufficient condition for log-log blow-up, stability of the rate

Theorem

If E(up) < 0 and [|1o|[2 > || Q|| 12, then i(t,-) blows up in finite time with
the log-log speed.
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Sufficient condition for log-log blow-up, stability of the rate

Theorem

If E(up) < 0 and [|1o|[2 > || Q|| 12, then i(t,-) blows up in finite time with
the log-log speed.

Moreover, the set of initial profiles 1o € H*(RN) such that

1QIIZ < llvollzz < IQIIZ + o

such that the corresponding solution (t,-) to (NLS) blows up in finite
time Tmax < +00 with the log-log speed is open in H*(RN).
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The spectral property (sketch)

The main concern is related to understanding what are the eigenvalues
and eigenvectors of the two real Schrodinger operators

L1:_A+V1a L1:_A+V27

where, still using the convention t = |x| in the radial setting,

Vi(t) = %(% + 1) Qut0,Q,  Va(t) = %Q%—ltata.
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The spectral property (sketch)

The main concern is related to understanding what are the eigenvalues
and eigenvectors of the two real Schrodinger operators

L1:_A+V1a L1:_A+V27

where, still using the convention t = |x| in the radial setting,

2 (4 _ 2 a4
Vi(t) = N(N + 1) Qv t9,Q,  Vu(t) = NQﬁ 140, Q.
In practice, we need to consider the ODE

{ —0e Ui(t) — N=18,Ui(t) + Vi(t) Ui(t) = 0
Ui(0) =1, 8:U;(0) =0,

and counting the number of zeros of U;, when i =1 and i = 2.
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Papers on log-log blow-up

F. Merle and P. Raphaél. "The blow-up dynamic and upper bound
on the blow-up rate for critical nonlinear Schrédinger equation”.

F. Merle and P. Raphaél. “On universality of blow-up profile for L2
critical nonlinear Schrodinger equation”.

F. Merle and P. Raphael. “Sharp upper bound on the blow-up rate
for the critical nonlinear Schrédinger equation”.

and many more!
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Papers on log-log blow-up

F. Merle and P. Raphaél. "The blow-up dynamic and upper bound
on the blow-up rate for critical nonlinear Schrédinger equation”.

F. Merle and P. Raphaél. “On universality of blow-up profile for L2
critical nonlinear Schrodinger equation”.

F. Merle and P. Raphael. “Sharp upper bound on the blow-up rate
for the critical nonlinear Schrédinger equation”.

and many more! For overviews, see

N. Burg. "Explosion pour I'équation de Schrdédinger au régime du
loglog (d'apres Merle-Raphael)”.

T. Cazenave. An overview of the nonlinear Schrédinger equation.
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Towards a computer-assisted proof of the spectral property

Strategies to provide computer-assisted proofs of the spectral property
have been developed in the following papers:

G. Fibich, F. Merle, and P. Raphaél. "Proof of a spectral property
related to the singularity formation for the L? critical nonlinear
Schrédinger equation”.

K. Yang, S. Roudenko, and Y. Zhao. “Blow-up dynamics and
spectral property in the L2-critical nonlinear Schrédinger equation in
high dimensions”.
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Towards a computer-assisted proof of the spectral property

Strategies to provide computer-assisted proofs of the spectral property
have been developed in the following papers:
G. Fibich, F. Merle, and P. Raphaél. "Proof of a spectral property

related to the singularity formation for the L? critical nonlinear
Schrédinger equation”.

K. Yang, S. Roudenko, and Y. Zhao. “Blow-up dynamics and

spectral property in the L?-critical nonlinear Schrédinger equation in
high dimensions”.

A good understanding of Q and of dynamics of (NLS) is needed to provide
rigorous computer-assisted proofs, providing error bounds between the
numerical and the theoretical solutions and taking floating point roundoff
errors into account (using e.g. interval arithmetic).
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